Urban flood prediction in real-time from weather radar and rainfall data using artificial neural networks
نویسندگان
چکیده
This paper describes the application of Artificial Neural Networks (ANNs) as Data Driven Models (DDMs) to predict urban flooding in real-time based on weather radar and/or raingauge rainfall data. A 123manhole combined sewer sub-network from Keighley, West Yorkshire, UK is used to demonstrate the methodology. An ANN is configured for prediction of flooding at manholes based on rainfall input. In the absence of actual flood data, the 3DNet / SIPSON simulator, which uses a conventional hydrodynamic approach to predict flooding surcharge levels in sewer networks, is employed to provide the target data for training the ANN. The ANN model, once trained, acts as a rapid surrogate for the hydrodynamic simulator. Artificial rainfall profiles derived from observed data provide the input. Both flood-level analogue and flood-severity classification schemes are implemented. We also investigate the use of an ANN for nowcasting of rainfall based on the relationship between radar data and recorded rainfall history. This allows the two ANNs to be cascaded to predict flooding in real-time based on weather radar.
منابع مشابه
Flood Forecasting Using Artificial Neural Networks: an Application of Multi-Model Data Fusion technique
Floods are among the natural disasters that cause human hardship and economic loss. Establishing a viable flood forecasting and warning system for communities at risk can mitigate these adverse effects. However, establishing an accurate flood forecasting system is still challenging due to the lack of knowledge about the effective variables in forecasting. The present study has indicated that th...
متن کاملPredicting CSO chamber depth using Artificial Neural Networks with rainfall radar data
Combined sewer overflows (CSOs) represent a common feature in combined urban drainage systems and are used to discharge excess water to the environment during heavy storms. To better understand the performance of CSOs, the UK water industry has installed a large number of monitoring systems that provide data for these assets. This paper presents research into the prediction of the hydraulic per...
متن کاملPrediction of monthly rainfall using artificial neural network mixture approach, Case Study: Torbat-e Heydariyeh
Rainfall is one of the most important elements of water cycle used in evaluating climate conditions of each region. Long-term forecast of rainfall for arid and semi-arid regions is very important for managing and planning of water resources. To forecast appropriately, accurate data regarding humidity, temperature, pressure, wind speed etc. is required.This article is analytical and its database...
متن کاملFlood Forecasting Using Artificial Neural Networks in Black-Box and Conceptual Rainfall-Runoff Modelling
The paper presents a comparison of lumped runoff modelling approaches, aimed at the realtime forecasting of flood events, based on or integrating Artificial Neural Networks (ANNs). ANNs are used in two ways: (a) as black-box type runoff simulation models or (b) for the real-time improvement of the discharge forecasts issued by a conceptual-type rainfall-runoff model. As far as the coupling of A...
متن کاملWeather radar rainfall data in urban hydrology
Application of weather radar data in urban hydrological applications has evolved significantly during the past decade as an alternative to traditional rainfall observations with rain gauges. Advances in radar hardware, data processing, numerical models, and emerging fields within urban hydrology necessitate an updated review of the state of the art in such radar rainfall data and applications. ...
متن کامل